24小时服务热线15271945224
Email电子邮箱407736620@qq.com
公司地址武汉市蔡甸区经济技术开发区东风三路1号-东合中心H座
2023年7月31日,在B类GPCRs小分子激动剂激活作用机制方面取得突破性进展,该研究团队在Nature杂志上以“快速通道”方式发表了最新研究成果“Conserved class B GPCR activation by a biased intracellular agonist”。
团队发现了B类GPCRs的新型小分子激动剂结合口袋,由于该结合口袋在B类GPCRs中具有较高的保守性,并且能够激活多种受体,这为研发针对该口袋的小分子激动剂提供了新的可能性。
因此,该药物口袋的发现为治疗糖尿病、肥胖、骨质疏松和其他涉及B类GPCRs的疾病的药物研发提供了新的方向和途径,为开发更具选择性和有效性的药物打开了新的视野。这种药物口袋的发现可以为未来的新药研发提供重要的基础和潜在机会(图1)。
△图1 右下角的小分子、受体和G蛋白复合物的三维结构是
本研究中报道的PCO371-PTH1R-Gs复合物结构,呈现的
是一种新型小分子结合口袋,气球代表B类GPCRs家族的15个成员。
本研究中发现的新型小分子结合口袋的主要氨基酸序列
在这15个受体中非常保守,宇航员带着这15个气球遨游在
广阔的太空,并开启了对这个新型口袋的小分子药物研究
新时代,未来针对这15个受体靶标的小分子药物研发将是
科学家们探索的新领域,并且这个领域的未来发展将会是
星辰大海。
本研究揭示了B类GPCRs 15个受体中一个保守且可供药物作用的口袋,这可能带来用于治疗各种疾病的口服小分子药物的开发。
通过冷冻电镜技术,研究团队获得了B类GPCRs中最重要的成员之一PTH1R与小分子激动剂PCO371的高分辨率结构,通过结构分析和功能实验发现B类GPCRs存在类似PCO371结合的保守的小分子结合口袋,揭示了PCO371的新型的结合模式,同时发现PCO37具有G蛋白信号通路偏向性激活作用,为B类GPCR的小分子药物设计和开发提供了新的见解和新的途径,通过针对这个保守的口袋进行药物研发,有可能开发比当前治疗方法更具选择性且副作用更少的药物。
该研究发现的新型小分子激动剂结合口袋,揭示了B类GPCRs激活的独特机制,为创新疗法铺平了道路,该工作展示了对B类GPCRs的开创性研究及其作为药物靶点的巨大潜力。
具体地说,PCO371结合在PTH1R与Gs蛋白的胞内界面上,与以前报道的所有GPCR中配体的结合位点完全不同。PCO371作为偏向激动剂,优先通过G蛋白触发信号传递,而非通过阻遏蛋白arrestin。
这种偏向性激动剂有助于减少阻遏蛋白arrestin信号通路引起的副作用,提高药物的安全性和有效性(图2)。
图2 PCO371偏向激活G蛋白信号通路,
但不激活阻遏蛋白arrestin信号通路;
PCO371-PTH1R-Gs复合物冷冻电镜
高分辨结构以及呈现的新型配体结合口袋
此外,研究团队通过结构分析和受体氨基酸序列比对发现,构成PCO371结合口袋的氨基酸残基在B类GPCRs中具有较高的保守性,使得PCO371能够激活B类GPCR中的8种受体,并且通过1个或2个点突变就可以使其他受体对PCO371产生反应(图3)。
图3 在B类GPCRs中普遍存在保守的
类似PCO371的结合口袋
这些发现揭示了B类GPCRs小分子激动剂的独特结合位点,这个保守的结合口袋为开发新的治疗糖尿病、肥胖、骨质疏松和其他涉及B类GPCRs的疾病的口服药物提供了令人兴奋的机会,为针对2型糖尿病、肥胖症和骨质疏松症等疾病的不同类型B类GPCR小分子激动剂药物的设计和开发提供了新的思路和方法。
参考文献
1.Pioszak, A. A. & Xu, H. E. Molecular recognition of parathyroid hormone by its G protein-coupled receptor. Proc Natl Acad Sci U S A 105, 5034-5039, doi:10.1073/pnas.0801027105 (2008).
2.Pioszak, A. A., Parker, N. R., Gardella, T. J. & Xu, H. E. Structural basis for parathyroid hormone-related protein binding to the parathyroid hormone receptor and design of conformation-selective peptides. The Journal of biological chemistry 284, 28382-28391, doi:10.1074/jbc.M109.022905 (2009).
3.Pal, K., Swaminathan, K., Xu, H. E. & Pioszak, A. A. Structural basis for hormone recognition by the Human CRFR2alpha G protein-coupled receptor. The Journal of biological chemistry 285, 40351-40361, doi:10.1074/jbc.M110.186072 (2010).
4.Zhao, L. H. et al. Differential Requirement of the Extracellular Domain in Activation of Class B G Protein-coupled Receptors. The Journal of biological chemistry 291, 15119-15130, doi:10.1074/jbc.M116.726620 (2016).
5.Yin, Y. et al. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain. Cell Discov 2, 16042, doi:10.1038/celldisc.2016.42 (2016).
6.Yin, Y. et al. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors. The Journal of biological chemistry 292, 9865-9881, doi:10.1074/jbc.M117.782987 (2017).
7.Zhao, L. H. et al. Structure and dynamics of the active human parathyroid hormone receptor-1. Science 364, 148-153, doi:10.1126/science.aav7942 (2019).
8.Ma, S. et al. Molecular Basis for Hormone Recognition and Activation of Corticotropin-Releasing Factor Receptors. Mol Cell 77, 669-680 e664, doi:10.1016/j.molcel.2020.01.013 (2020).
9.Zhou, F. et al. Structural basis for activation of the growth hormone-releasing hormone receptor. Nat Commun 11, 5205, doi:10.1038/s41467-020-18945-0 (2020).
10.Sun, W. et al. A unique hormonal recognition feature of the human glucagon-like peptide-2 receptor. Cell Res 30, 1098-1108, doi:10.1038/s41422-020-00442-0 (2020).
11.Duan, J. et al. Cryo-EM structure of an activated VIP1 receptor-G protein complex revealed by a NanoBiT tethering strategy. Nat Commun 11, 4121, doi:10.1038/s41467-020-17933-8 (2020).
12.Ma, H. et al. Structural insights into the activation of GLP-1R by a small molecule agonist. Cell Res 30, 1140-1142, doi:10.1038/s41422-020-0384-8 (2020).
13.Wang, X. et al. Molecular insights into differentiated ligand recognition of the human parathyroid hormone receptor 2. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2101279118 (2021).
14.Zhao, F. et al. Structural insights into hormone recognition by the human glucose-dependent insulinotropic polypeptide receptor. Elife 10, doi:10.7554/eLife.68719 (2021).
15.Cong, Z. et al. Molecular insights into ago-allosteric modulation of the human glucagon-like peptide-1 receptor. Nat Commun 12, 3763, doi:10.1038/s41467-021-24058-z (2021).
16.Cong, Z. et al. Constitutive signal bias mediated by the human GHRHR splice variant 1. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2106606118 (2021).
17.Zhao, F. et al. Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nat Commun 13, 1057, doi:10.1038/s41467-022-28683-0 (2022).
18.Xu, Y. et al. A distinctive ligand recognition mechanism by the human vasoactive intestinal polypeptide receptor 2. Nat Commun 13, 2272, doi:10.1038/s41467-022-30041-z (2022).
19.Zhao, L. H. et al. Structure insights into selective coupling of G protein subtypes by a class B G protein-coupled receptor. Nat Commun 13, 6670, doi:10.1038/s41467-022-33851-3 (2022).
20.Zhao, L. H. et al. Molecular recognition of two endogenous hormones by the human parathyroid hormone receptor-1. Acta Pharmacol Sin, doi:10.1038/s41401-022-01032-z (2022).
在线
咨询
15271945224
咨询热线
微信咨询